Files
IdealRMT-DecisionTrees/DecisionTree.ipynb
2025-06-07 01:10:05 +00:00

187 lines
5.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"id": "d5618056",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import argparse\n",
"from sklearn.tree import DecisionTreeClassifier, plot_tree, _tree\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.tree import export_graphviz\n",
"import pydotplus\n",
"from matplotlib import pyplot as plt\n",
"from labels import mac_to_label\n",
"import json\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b96f3403",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataset size: 4735360\n",
"train accuracy: 0.879490682862549\n",
"test accuracy: 0.879490682862549\n"
]
}
],
"source": [
"inputfile = \"data.csv\"\n",
"outputfile = \"tree.json\"\n",
"\n",
"# Training set X and Y\n",
"Set1 = pd.read_csv(inputfile)\n",
"Set = Set1.values.tolist()\n",
"X = [i[0:3] for i in Set]\n",
"Y =[i[3] for i in Set]\n",
"\n",
"# Test set Xt and Yt\n",
"Set2 = pd.read_csv(inputfile)\n",
"Sett = Set2.values.tolist()\n",
"Xt = [i[0:3] for i in Set]\n",
"Yt =[i[3] for i in Set]\n",
"\n",
"# prepare training and testing set\n",
"X = np.array(X)\n",
"Y = np.array(Y)\n",
"Xt = np.array(Xt)\n",
"Yt = np.array(Yt)\n",
"\n",
"print(f\"dataset size: {len(X)}\")\n",
"\n",
"# decision tree fit\n",
"dt = DecisionTreeClassifier(max_depth = 5)\n",
"dt.fit(X, Y)\n",
"Predict_Y = dt.predict(X)\n",
"print(f\"train accuracy: {accuracy_score(Y, Predict_Y)}\")\n",
"\n",
"Predict_Yt = dt.predict(Xt)\n",
"print(f\"test accuracy: {accuracy_score(Yt, Predict_Yt)}\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d336971a",
"metadata": {},
"outputs": [],
"source": [
"# output the tree\n",
"def get_lineage(tree, feature_names):\n",
" data = {\"features\": {}, \"paths\": []}\n",
"\n",
" thresholds = tree.tree_.threshold\n",
" features = [feature_names[i] for i in tree.tree_.feature]\n",
" left = tree.tree_.children_left\n",
" right = tree.tree_.children_right\n",
" value = tree.tree_.value\n",
" \n",
" # get ids of child nodes\n",
" idx = np.argwhere(left == -1)[:, 0]\n",
" # traverse the tree and get the node information\n",
" def recurse(left, right, child, lineage=None):\n",
" if lineage is None:\n",
" lineage = [child]\n",
" if child in left:\n",
" parent = np.where(left == child)[0].item()\n",
" split = 'l'\n",
" else:\n",
" parent = np.where(right == child)[0].item()\n",
" split = 'r'\n",
" \n",
" lineage.append((parent, split, thresholds[parent], features[parent]))\n",
" if parent == 0:\n",
" lineage.reverse()\n",
" return lineage\n",
" else:\n",
" return recurse(left, right, parent, lineage)\n",
"\n",
" for j, child in enumerate(idx):\n",
" clause = []\n",
" for node in recurse(left, right, child):\n",
" if len(str(node)) < 3:\n",
" continue\n",
" direction = node[1]\n",
" threshold = node[2]\n",
" feature = node[3]\n",
" if direction == \"l\": # feature <= threshold\n",
" clause.append({\"feature\": feature, \"operation\": \"<=\", \"value\": threshold})\n",
" else: # direction == \"r\" # feature > threshold\n",
" threshold\n",
" clause.append({\"feature\": feature, \"operation\": \">\", \"value\": threshold})\n",
" \n",
" a = list(value[node][0])\n",
" ind = a.index(max(a))\n",
" clause = {\"conditions\": clause, \"classification\": ind}\n",
" data[\"paths\"].append(clause)\n",
"\n",
" for i, fe in enumerate(features):\n",
" if tree.tree_.feature[i] != _tree.TREE_UNDEFINED:\n",
" if not fe in data[\"features\"]:\n",
" data[\"features\"][fe] = []\n",
" data[\"features\"][fe].append(thresholds[i])\n",
"\n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7f36344d",
"metadata": {},
"outputs": [],
"source": [
"# get feature names\n",
"feature_names = Set1.columns\n",
"file = open(outputfile, \"w+\")\n",
"lineage = get_lineage(dt, feature_names)\n",
"file.write(json.dumps(lineage, indent = 4))\n",
"file.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf8832b9",
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(25,20))\n",
"_ = plot_tree(dt, filled=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "switch",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}