Files
IdealRMT-DecisionTrees/CompressedTreeParser.ipynb

129 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "938dec51",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import argparse\n",
"from sklearn.tree import DecisionTreeClassifier, plot_tree, _tree\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.tree import export_graphviz\n",
"import pydotplus\n",
"from matplotlib import pyplot as plt\n",
"from labels import mac_to_label\n",
"import json\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "442624c7",
"metadata": {},
"outputs": [],
"source": [
"Set1 = pd.read_csv('data.csv').values.tolist()\n",
"X = [i[0:3] for i in Set1]\n",
"Y =[i[3] for i in Set1]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "12ad454d",
"metadata": {},
"outputs": [],
"source": [
"predict_Yt = []\n",
"with open('compressed_tree.json', 'r') as file:\n",
" data = json.load(file)\n",
" classes = data[\"classes\"]\n",
" for x in X:\n",
" counter = 0\n",
" class_set = []\n",
" for feature in reversed(data['layers']): #Have to reverse this list due to structure of the data.csv file and how it aligns with the compressed tree layers\n",
" for node in data['layers'][feature]:\n",
" if node['min'] is None:\n",
" if x[counter] < node['max']:\n",
" class_set.append(node['classes'])\n",
" break #is this an issue?\n",
" else:\n",
" continue\n",
" elif node['max'] is None:\n",
" if node['min'] < x[counter]:\n",
" class_set.append(node['classes'])\n",
" break #is this an issue?\n",
" else:\n",
" continue\n",
" elif node['min'] < x[counter] and x[counter] < node['max']:\n",
" class_set.append(node['classes'])\n",
" break #is this an issue?\n",
"\n",
" counter += 1\n",
" result = set(class_set[0])\n",
" for s in class_set[1:]:\n",
" result.intersection_update(s)\n",
"\n",
" #predict_Yt.append(list(result))\n",
" #print(result)\n",
" if len(result) == 1:\n",
" prediction = list(result)[0]\n",
" pred_class = classes[prediction]\n",
" predict_Yt.append(pred_class)\n",
" else:\n",
" predict_Yt.append(None)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8b4c56b6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.8448217242194891\n"
]
}
],
"source": [
"correct = 0\n",
"for i in range(len(Y)):\n",
" prediction = predict_Yt[i]\n",
" if prediction != None and Y[i] == prediction:\n",
" correct += 1\n",
"\n",
"print(correct / len(Y))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}