{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "97e76d73", "metadata": {}, "outputs": [], "source": [ "from scapy.all import *\n", "import numpy as np\n", "import pandas as pd\n", "import argparse\n", "import os\n", "from labels import mac_to_label\n", "\n", "inputfile = \"data.pcap\"\n", "outputfile = \"data.csv\"" ] }, { "cell_type": "code", "execution_count": 2, "id": "119623a5", "metadata": {}, "outputs": [], "source": [ "#read the pcap file and extract the features for each packet\n", "all_packets = rdpcap(inputfile)" ] }, { "cell_type": "code", "execution_count": 3, "id": "f5584562", "metadata": {}, "outputs": [], "source": [ "results = []\n", "for packet in all_packets:\n", " size = len(packet)\n", " try:\n", " proto = packet.proto\n", " except AttributeError:\n", " proto = 0\n", " try:\n", " sport = packet.sport\n", " dport = packet.dport\n", " except AttributeError:\n", " sport = 0\n", " dport = 0\n", "\n", " proto = int(proto)\n", " sport = int(sport)\n", " dport = int(dport)\n", "\n", " if \"Ether\" in packet:\n", " eth_dst = packet[\"Ether\"].dst\n", " if eth_dst in mac_to_label:\n", " classification = mac_to_label[eth_dst]\n", " else:\n", " classification = \"other\"\n", " else:\n", " classification = \"other\"\n", "\n", " metric = [proto,sport,dport,classification]\n", " results.append(metric)\n", "results = (np.array(results)).T" ] }, { "cell_type": "code", "execution_count": 4, "id": "2e04c2d1", "metadata": {}, "outputs": [], "source": [ "# store the features in the dataframe\n", "dataframe = pd.DataFrame({'protocl':results[0],'src':results[1],'dst':results[2],'classfication':results[3]})\n", "columns = ['protocl','src','dst','classfication']\n", "\n", "# save the dataframe to the csv file, if not exsit, create one.\n", "if os.path.exists(outputfile):\n", " dataframe.to_csv(outputfile,index=False,sep=',',mode='a',columns = columns, header=False)\n", "else:\n", " dataframe.to_csv(outputfile,index=False,sep=',',columns = columns)" ] } ], "metadata": { "kernelspec": { "display_name": "switch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }