mirror of
https://github.com/ltcptgeneral/IdealRMT-DecisionTrees.git
synced 2025-09-05 14:57:23 +00:00
add data processing notebooks
This commit is contained in:
188
DecisionTree.ipynb
Normal file
188
DecisionTree.ipynb
Normal file
@@ -0,0 +1,188 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d5618056",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import argparse\n",
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"from sklearn.tree import export_graphviz\n",
|
||||
"import pydotplus"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "d336971a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# extract argument\n",
|
||||
"inputfile = \"data.csv\"\n",
|
||||
"outputfile = \"tree\"\n",
|
||||
"#testfile = args.t\n",
|
||||
"\n",
|
||||
"# output the tree\n",
|
||||
"def get_lineage(tree, feature_names, file):\n",
|
||||
" proto = []\n",
|
||||
" src = []\n",
|
||||
" dst = []\n",
|
||||
" left = tree.tree_.children_left\n",
|
||||
" right = tree.tree_.children_right\n",
|
||||
" threshold = tree.tree_.threshold\n",
|
||||
" features = [feature_names[i] for i in tree.tree_.feature]\n",
|
||||
" value = tree.tree_.value\n",
|
||||
" le = '<='\n",
|
||||
" g = '>'\n",
|
||||
" # get ids of child nodes\n",
|
||||
" idx = np.argwhere(left == -1)[:, 0]\n",
|
||||
" \n",
|
||||
" # traverse the tree and get the node information\n",
|
||||
" def recurse(left, right, child, lineage=None):\n",
|
||||
" if lineage is None:\n",
|
||||
" lineage = [child]\n",
|
||||
" if child in left:\n",
|
||||
" parent = np.where(left == child)[0].item()\n",
|
||||
" split = 'l'\n",
|
||||
" else:\n",
|
||||
" parent = np.where(right == child)[0].item()\n",
|
||||
" split = 'r'\n",
|
||||
" \n",
|
||||
" lineage.append((parent, split, threshold[parent], features[parent]))\n",
|
||||
" if parent == 0:\n",
|
||||
" lineage.reverse()\n",
|
||||
" return lineage\n",
|
||||
" else:\n",
|
||||
" return recurse(left, right, parent, lineage)\n",
|
||||
"\n",
|
||||
" for j, child in enumerate(idx):\n",
|
||||
" clause = ' when '\n",
|
||||
" for node in recurse(left, right, child):\n",
|
||||
" if len(str(node)) < 3:\n",
|
||||
" continue\n",
|
||||
" i = node\n",
|
||||
" \n",
|
||||
" if i[1] == 'l':\n",
|
||||
" sign = le\n",
|
||||
" else:\n",
|
||||
" sign = g\n",
|
||||
" clause = clause + i[3] + sign + str(i[2]) + ' and '\n",
|
||||
" \n",
|
||||
" # wirte the node information into text file\n",
|
||||
" a = list(value[node][0])\n",
|
||||
" ind = a.index(max(a))\n",
|
||||
" clause = clause[:-4] + ' then ' + str(ind)\n",
|
||||
" file.write(clause)\n",
|
||||
" file.write(\";\\n\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "b96f3403",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"train accuracy: 0.879490682862549\n",
|
||||
"test accuracy: 0.879490682862549\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Training set X and Y\n",
|
||||
"Set1 = pd.read_csv(inputfile)\n",
|
||||
"Set = Set1.values.tolist()\n",
|
||||
"X = [i[0:3] for i in Set]\n",
|
||||
"Y =[i[3] for i in Set]\n",
|
||||
"\n",
|
||||
"# Test set Xt and Yt\n",
|
||||
"Set2 = pd.read_csv(inputfile)\n",
|
||||
"Sett = Set2.values.tolist()\n",
|
||||
"Xt = [i[0:3] for i in Set]\n",
|
||||
"Yt =[i[3] for i in Set]\n",
|
||||
"\n",
|
||||
"#class_names=['iperf','memcached','ping','sparkglm','sparkkmeans']\n",
|
||||
"feature_names=['proto','src','dst']\n",
|
||||
"\n",
|
||||
"# prepare training and testing set\n",
|
||||
"X = np.array(X)\n",
|
||||
"Y = np.array(Y)\n",
|
||||
"Xt = np.array(Xt)\n",
|
||||
"Yt = np.array(Yt)\n",
|
||||
"\n",
|
||||
"# decision tree fit\n",
|
||||
"dt = DecisionTreeClassifier(max_depth = 5)\n",
|
||||
"dt.fit(X, Y)\n",
|
||||
"Predict_Y = dt.predict(X)\n",
|
||||
"print(f\"train accuracy: {accuracy_score(Y, Predict_Y)}\")\n",
|
||||
"\n",
|
||||
"Predict_Yt = dt.predict(Xt)\n",
|
||||
"print(f\"test accuracy: {accuracy_score(Yt, Predict_Yt)}\")\n",
|
||||
"\n",
|
||||
"# output the tree in a text file, write it\n",
|
||||
"threshold = dt.tree_.threshold\n",
|
||||
"features = [feature_names[i] for i in dt.tree_.feature]\n",
|
||||
"proto = []\n",
|
||||
"src = []\n",
|
||||
"dst = []\n",
|
||||
"for i, fe in enumerate(features):\n",
|
||||
" \n",
|
||||
" if fe == 'proto':\n",
|
||||
" proto.append(threshold[i])\n",
|
||||
" elif fe == 'src':\n",
|
||||
" if threshold[i] != -2.0:\n",
|
||||
" src.append(threshold[i])\n",
|
||||
" else:\n",
|
||||
" dst.append(threshold[i])\n",
|
||||
"proto = [int(i) for i in proto]\n",
|
||||
"src = [int(i) for i in src]\n",
|
||||
"dst = [int(i) for i in dst]\n",
|
||||
"proto.sort()\n",
|
||||
"src.sort()\n",
|
||||
"dst.sort()\n",
|
||||
"tree = open(outputfile,\"w+\")\n",
|
||||
"tree.write(\"proto = \")\n",
|
||||
"tree.write(str(proto))\n",
|
||||
"tree.write(\";\\n\")\n",
|
||||
"tree.write(\"src = \")\n",
|
||||
"tree.write(str(src))\n",
|
||||
"tree.write(\";\\n\")\n",
|
||||
"tree.write(\"dst = \")\n",
|
||||
"tree.write(str(dst))\n",
|
||||
"tree.write(\";\\n\")\n",
|
||||
"get_lineage(dt,feature_names,tree)\n",
|
||||
"tree.close()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "switch",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Reference in New Issue
Block a user