mirror of
https://github.com/ltcptgeneral/IdealRMT-DecisionTrees.git
synced 2025-09-06 23:37:23 +00:00
Add support for combined datasets and analysis
This commit is contained in:
44
sanity_check/csvdiff.py
Normal file
44
sanity_check/csvdiff.py
Normal file
@@ -0,0 +1,44 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
csvdiff.py file1.csv file2.csv
|
||||
Streams both files; prints the first differing line or
|
||||
‘No differences found’. Uses O(1) memory.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from itertools import zip_longest
|
||||
from pathlib import Path
|
||||
|
||||
def open_checked(p: str):
|
||||
print(p)
|
||||
path = Path(p)
|
||||
try:
|
||||
return path.open("r", newline=""), path
|
||||
except FileNotFoundError:
|
||||
sys.exit(f"Error: {path} not found")
|
||||
|
||||
def human(n: int) -> str:
|
||||
return f"{n:,}"
|
||||
|
||||
def main(a_path: str, b_path: str) -> None:
|
||||
fa, a = open_checked(a_path)
|
||||
fb, b = open_checked(b_path)
|
||||
|
||||
with fa, fb:
|
||||
for idx, (ra, rb) in enumerate(zip_longest(fa, fb), 1):
|
||||
if ra != rb:
|
||||
print(f"Files differ at line {human(idx)}")
|
||||
if ra is None:
|
||||
print(f"{a} ended early")
|
||||
elif rb is None:
|
||||
print(f"{b} ended early")
|
||||
else:
|
||||
print(f"{a}: {ra.rstrip()}")
|
||||
print(f"{b}: {rb.rstrip()}")
|
||||
return
|
||||
print("No differences found")
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) != 3:
|
||||
sys.exit("Usage: csvdiff.py file1.csv file2.csv")
|
||||
main(sys.argv[1], sys.argv[2])
|
600
sanity_check/data_visualization.ipynb
Normal file
600
sanity_check/data_visualization.ipynb
Normal file
File diff suppressed because one or more lines are too long
206
sanity_check/diversity_metrics.py
Normal file
206
sanity_check/diversity_metrics.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#!/usr/bin/env python3
|
||||
"""diversity_metrics.py (fast version)
|
||||
|
||||
Estimate how much diversity each CSV adds without building a giant in‑memory
|
||||
DataFrame. Designed for IoT packet logs with millions of rows.
|
||||
|
||||
Quick summary printed as a GitHub‑style table (requires *tabulate*; falls back
|
||||
to pandas plain text).
|
||||
|
||||
Usage
|
||||
-----
|
||||
python diversity_metrics.py path/to/processed_dir [-r] [--sample 50000]
|
||||
|
||||
Metrics
|
||||
-------
|
||||
ΔEntropy : change in Shannon entropy of *classification* counts
|
||||
ΔGini : change in Gini impurity of the same counts
|
||||
χ² p : Pearson χ² p‑value old vs new classification counts
|
||||
Jaccard : similarity of unique (src,dst) pairs (0 → new pairs, 1 → no new)
|
||||
KS src p : Kolmogorov–Smirnov p‑value, source‑port dist (uses sampling)
|
||||
KS dst p : Kolmogorov–Smirnov p‑value, dest‑port dist (uses sampling)
|
||||
|
||||
Speed tricks
|
||||
------------
|
||||
* No growing DataFrame; we keep Counters / sets / lists.
|
||||
* Ports for KS are *sampled* (default 50 k) to bound cost.
|
||||
* (src,dst) pairs are hashed to a 32‑bit int to reduce set overhead.
|
||||
* pandas reads via **pyarrow** engine when available.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from collections import Counter
|
||||
from typing import List, Set
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.stats import chi2_contingency, ks_2samp, entropy
|
||||
|
||||
try:
|
||||
from tabulate import tabulate
|
||||
_USE_TABULATE = True
|
||||
except ImportError:
|
||||
_USE_TABULATE = False
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Helper metrics
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def shannon(counts: Counter) -> float:
|
||||
total = sum(counts.values())
|
||||
if total == 0:
|
||||
return 0.0
|
||||
p = np.fromiter(counts.values(), dtype=float)
|
||||
p /= total
|
||||
return entropy(p, base=2)
|
||||
|
||||
|
||||
def gini(counts: Counter) -> float:
|
||||
total = sum(counts.values())
|
||||
if total == 0:
|
||||
return 0.0
|
||||
return 1.0 - sum((n / total) ** 2 for n in counts.values())
|
||||
|
||||
|
||||
def jaccard(a: Set[int], b: Set[int]) -> float:
|
||||
if not a and not b:
|
||||
return 1.0
|
||||
return len(a & b) / len(a | b)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Core analysis
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def analyse(csv_files: List[Path], sample_size: int):
|
||||
"""Return list of dicts with diversity metrics for each added file."""
|
||||
|
||||
# cumulative state (no big DataFrame!)
|
||||
class_counter: Counter = Counter()
|
||||
pair_hashes: Set[int] = set()
|
||||
src_list: List[int] = []
|
||||
dst_list: List[int] = []
|
||||
|
||||
rows = []
|
||||
|
||||
for csv_path in csv_files:
|
||||
df = pd.read_csv(
|
||||
csv_path,
|
||||
engine="pyarrow" if pd.__version__ >= "2" else "c", # fast parse
|
||||
usecols=["protocl", "src", "dst", "classfication"],
|
||||
dtype={
|
||||
"protocl": "uint16",
|
||||
"protocol": "uint16",
|
||||
"src": "uint16",
|
||||
"dst": "uint16",
|
||||
},
|
||||
)
|
||||
# normalise column names
|
||||
df.rename(columns={"protocl": "protocol", "classfication": "classification"}, inplace=True)
|
||||
|
||||
# snapshot previous state
|
||||
prev_class = class_counter.copy()
|
||||
prev_pairs = pair_hashes.copy()
|
||||
prev_src = np.asarray(src_list, dtype=np.uint16)
|
||||
prev_dst = np.asarray(dst_list, dtype=np.uint16)
|
||||
|
||||
# --- update cumulative structures ------------------------------------
|
||||
class_counter.update(df["classification"].value_counts().to_dict())
|
||||
|
||||
# hash (src,dst) into 32‑bit int to save memory
|
||||
pair_ids = (df["src"].to_numpy(dtype=np.uint32) << np.uint32(16)) | \
|
||||
df["dst"].to_numpy(dtype=np.uint32)
|
||||
|
||||
|
||||
# extend port lists (keep small ints)
|
||||
src_list.extend(df["src"].tolist())
|
||||
dst_list.extend(df["dst"].tolist())
|
||||
|
||||
# --- metrics ----------------------------------------------------------
|
||||
# χ² classification
|
||||
chi_p = np.nan
|
||||
if prev_class:
|
||||
all_classes = list(set(prev_class) | set(df["classification"].unique()))
|
||||
old = [prev_class.get(c, 0) for c in all_classes]
|
||||
new = [df["classification"].value_counts().get(c, 0) for c in all_classes]
|
||||
_, chi_p, _, _ = chi2_contingency([old, new])
|
||||
|
||||
# entropy & gini deltas
|
||||
delta_entropy = shannon(class_counter) - shannon(prev_class)
|
||||
delta_gini = gini(class_counter) - gini(prev_class)
|
||||
|
||||
# Jaccard on pair hashes
|
||||
jc = jaccard(prev_pairs, pair_hashes)
|
||||
|
||||
# KS tests on sampled ports
|
||||
ks_src_p = ks_dst_p = np.nan
|
||||
if prev_src.size:
|
||||
new_src = df["src"].to_numpy(dtype=np.uint16)
|
||||
new_dst = df["dst"].to_numpy(dtype=np.uint16)
|
||||
if prev_src.size > sample_size:
|
||||
prev_src_sample = np.random.choice(prev_src, sample_size, replace=False)
|
||||
else:
|
||||
prev_src_sample = prev_src
|
||||
if new_src.size > sample_size:
|
||||
new_src_sample = np.random.choice(new_src, sample_size, replace=False)
|
||||
else:
|
||||
new_src_sample = new_src
|
||||
if prev_dst.size > sample_size:
|
||||
prev_dst_sample = np.random.choice(prev_dst, sample_size, replace=False)
|
||||
else:
|
||||
prev_dst_sample = prev_dst
|
||||
if new_dst.size > sample_size:
|
||||
new_dst_sample = np.random.choice(new_dst, sample_size, replace=False)
|
||||
else:
|
||||
new_dst_sample = new_dst
|
||||
|
||||
ks_src_p = ks_2samp(prev_src_sample, new_src_sample).pvalue
|
||||
ks_dst_p = ks_2samp(prev_dst_sample, new_dst_sample).pvalue
|
||||
|
||||
rows.append(
|
||||
{
|
||||
"File": csv_path.name,
|
||||
"Rows": len(df),
|
||||
"ΔEntropy": round(delta_entropy, 4),
|
||||
"ΔGini": round(delta_gini, 4),
|
||||
"χ² p": f"{chi_p:.3g}" if not np.isnan(chi_p) else "NA",
|
||||
"Jaccard": round(jc, 3),
|
||||
"KS src p": f"{ks_src_p:.3g}" if not np.isnan(ks_src_p) else "NA",
|
||||
"KS dst p": f"{ks_dst_p:.3g}" if not np.isnan(ks_dst_p) else "NA",
|
||||
}
|
||||
)
|
||||
return rows
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# CLI
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def main():
|
||||
ap = argparse.ArgumentParser(description="Evaluate diversity contribution of each CSV (fast version).")
|
||||
ap.add_argument("csv_dir", help="Directory containing CSV files")
|
||||
ap.add_argument("-r", "--recursive", action="store_true", help="Recursively search csv_dir")
|
||||
ap.add_argument("--sample", type=int, default=50_000, help="Sample size for KS tests (default 50k)")
|
||||
args = ap.parse_args()
|
||||
|
||||
root = Path(args.csv_dir)
|
||||
pattern = "**/*.csv" if args.recursive else "*.csv"
|
||||
csv_files = sorted(root.glob(pattern))
|
||||
if not csv_files:
|
||||
print("No CSV files found.")
|
||||
return
|
||||
|
||||
table_rows = analyse(csv_files, args.sample)
|
||||
|
||||
if _USE_TABULATE:
|
||||
print(tabulate(table_rows, headers="keys", tablefmt="github", floatfmt=".4f"))
|
||||
else:
|
||||
print(pd.DataFrame(table_rows).to_string(index=False))
|
||||
|
||||
print(
|
||||
"\nLegend:\n • p-values (χ², KS) < 0.05 → new file significantly shifts distribution (GOOD)"
|
||||
"\n • Positive ΔEntropy or ΔGini → richer mix; near 0 → little new info"
|
||||
"\n • Jaccard close to 0 → many unseen (src,dst) pairs; close to 1 → redundant."
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user