add some preliminary results
This commit is contained in:
commit
85861c572e
BIN
australian_user_reviews.json.gz
Normal file
BIN
australian_user_reviews.json.gz
Normal file
Binary file not shown.
280
preliminary.ipynb
Normal file
280
preliminary.ipynb
Normal file
@ -0,0 +1,280 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "494d6c25",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import gzip\n",
|
||||
"def parseData(fname):\n",
|
||||
" for l in gzip.open(fname):\n",
|
||||
" yield eval(l)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "ca7ea536",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = list(parseData(\"australian_user_reviews.json.gz\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "eb772e3d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[[29204, 21950], [964, 7187]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import re\n",
|
||||
"\n",
|
||||
"dm = [[0,0],[0,0]]\n",
|
||||
"\n",
|
||||
"for user in data:\n",
|
||||
" for review in user[\"reviews\"]:\n",
|
||||
" funny = review[\"funny\"]\n",
|
||||
" hasfunny = int(funny != \"\")\n",
|
||||
" if funny == \"\":\n",
|
||||
" review[\"funny\"] = 0\n",
|
||||
" else:\n",
|
||||
" review[\"funny\"] = int(re.findall(\"\\d+\", funny)[0])\n",
|
||||
" \n",
|
||||
" helpful = review[\"helpful\"]\n",
|
||||
" hashelpful = int(helpful != \"No ratings yet\")\n",
|
||||
" if helpful == \"No ratings yet\":\n",
|
||||
" review[\"helpful\"] = 0\n",
|
||||
" else:\n",
|
||||
" nums = re.findall(\"\\d+\", helpful)\n",
|
||||
" review[\"helpful\"] = float(nums[0]) / float(nums[1])\n",
|
||||
" \n",
|
||||
" dm[hasfunny][hashelpful] += 1\n",
|
||||
" \n",
|
||||
"print(dm)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "72528b34",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"97248"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from collections import defaultdict\n",
|
||||
"import string\n",
|
||||
"from nltk.stem.porter import *\n",
|
||||
"\n",
|
||||
"wordCount = defaultdict(int)\n",
|
||||
"punctuation = set(string.punctuation)\n",
|
||||
"stemmer = PorterStemmer()\n",
|
||||
"for user in data:\n",
|
||||
" for review in user[\"reviews\"]:\n",
|
||||
" r = ''.join([c for c in review['review'].lower() if not c in punctuation])\n",
|
||||
" for w in r.split():\n",
|
||||
" w = stemmer.stem(w)\n",
|
||||
" wordCount[w] += 1\n",
|
||||
" \n",
|
||||
"len(wordCount)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "834dfe92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"counts = [(wordCount[w], w) for w in wordCount]\n",
|
||||
"counts.sort()\n",
|
||||
"counts.reverse()\n",
|
||||
"words = [x[1] for x in counts[:1000]]\n",
|
||||
"wordId = dict(zip(words, range(len(words))))\n",
|
||||
"wordSet = set(words)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "b9b3142f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def feature(datum):\n",
|
||||
" feat = [0]*len(words)\n",
|
||||
" r = ''.join([c for c in datum['review'].lower() if not c in punctuation])\n",
|
||||
" for w in r.split():\n",
|
||||
" if w in words:\n",
|
||||
" feat[wordId[w]] += 1\n",
|
||||
" feat.append(1) # offset\n",
|
||||
" return feat"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "c9b40320",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"X = []\n",
|
||||
"Y1 = []\n",
|
||||
"Y2 = []\n",
|
||||
"for user in data:\n",
|
||||
" for review in user[\"reviews\"]:\n",
|
||||
" X.append(feature(review))\n",
|
||||
" Y1.append(review[\"funny\"])\n",
|
||||
" Y2.append(review[\"helpful\"])\n",
|
||||
"\n",
|
||||
"X = np.array(X)\n",
|
||||
"Y1 = np.array(Y1)\n",
|
||||
"Y2 = np.array(Y2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "de506b44",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"baseline 291.58597082421744 104.0410362862406\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"guess_mean1 = np.mean(Y1)\n",
|
||||
"guess_mean2 = np.mean(Y2)\n",
|
||||
"\n",
|
||||
"print(\"baseline\", mean_squared_error(Y1, [guess_mean1]*len(Y1)), mean_squared_error(Y2, [guess_mean2]*len(Y2)))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "442da10a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.001 279.441162284691 111.14407506578739\n",
|
||||
"0.01 279.44116808131514 111.14220804619674\n",
|
||||
"0.1 279.4416527267009 111.12490360179714\n",
|
||||
"1 279.4563820408731 111.0088419162745\n",
|
||||
"10 279.55878360690946 110.3977031070603\n",
|
||||
"100 280.29261897219476 108.18116566648386\n",
|
||||
"1000 283.89486211897093 104.93301065452346\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn import linear_model\n",
|
||||
"\n",
|
||||
"for C in [0.001, 0.01, 0.1, 1, 10, 100, 1000]:\n",
|
||||
"\n",
|
||||
" model1 = linear_model.Ridge(C, fit_intercept=True)\n",
|
||||
" model1.fit(X, Y1)\n",
|
||||
"\n",
|
||||
" model2 = linear_model.Ridge(C, fit_intercept=True)\n",
|
||||
" model2.fit(X, Y2)\n",
|
||||
"\n",
|
||||
" predictions1 = model1.predict(X)\n",
|
||||
" predictions2 = model1.predict(X)\n",
|
||||
"\n",
|
||||
" print(C, mean_squared_error(Y1, predictions1), mean_squared_error(Y2, predictions2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "90b2ad33",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1 291.58597082421744 104.40268312757502\n",
|
||||
"10 291.58597082421744 104.40268312757502\n",
|
||||
"100 291.58597082421744 104.40268312757502\n",
|
||||
"1000 291.58597082421744 104.40268312757502\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn import linear_model\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"\n",
|
||||
"for C in [1, 10, 100, 1000]:\n",
|
||||
"\n",
|
||||
" model1 = linear_model.Lasso(alpha=C, fit_intercept=True)\n",
|
||||
" model1.fit(X, Y1)\n",
|
||||
"\n",
|
||||
" model2 = linear_model.Lasso(alpha=C, fit_intercept=True)\n",
|
||||
" model2.fit(X, Y2)\n",
|
||||
"\n",
|
||||
" predictions1 = model1.predict(X)\n",
|
||||
" predictions2 = model1.predict(X)\n",
|
||||
"\n",
|
||||
" print(C, mean_squared_error(Y1, predictions1), mean_squared_error(Y2, predictions2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fafe9eec",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Reference in New Issue
Block a user