encoding_width = 2**13 # restricted by ckks size database_size = 100 import time # Client Setup import numpy as np from Pyfhel import Pyfhel, PyCtxt print(f"[Client] Initializing Pyfhel session and data...") HE_client = Pyfhel() # Creating empty Pyfhel object ckks_params = { 'scheme': 'CKKS', # can also be 'ckks' 'n': 2**14, # Polynomial modulus degree. For CKKS, n/2 values can be # encoded in a single ciphertext. # Typ. 2^D for D in [10, 15] 'scale': 2**30, # All the encodings will use it for float->fixed point # conversion: x_fix = round(x_float * scale) # You can use this as default scale or use a different # scale on each operation (set in HE.encryptFrac) 'qi_sizes': [60, 30, 30, 30, 60] # Number of bits of each prime in the chain. # Intermediate values should be close to log2(scale) # for each operation, to have small rounding errors. } HE_client.contextGen(**ckks_params) # Generate context for bfv scheme HE_client.keyGen() # Generates both a public and a private key HE_client.relinKeyGen() HE_client.rotateKeyGen() # Generate and encrypt query vector x = np.random.rand(encoding_width) #cx = np.array([HE_client.encrypt(x[j]) for j in range(len(x))]) # precompute 1 - |x|^2 for query vector du = 1 - x @ x cx = HE_client.encrypt(x) # Serializing data and public context information s_context = HE_client.to_bytes_context() s_public_key = HE_client.to_bytes_public_key() s_relin_key = HE_client.to_bytes_relin_key() s_rotate_key = HE_client.to_bytes_rotate_key() #s_cx = [cx[j].to_bytes() for j in range(len(cx))] s_cx = cx.to_bytes() print(f"[Client] Sending HE_client={HE_client} and cx={cx}") print(f"[Client] Sent {(len(s_context) + len(s_public_key) + len(s_relin_key) + len(s_rotate_key) + len(s_cx)) / (10**6)} MB") # Server Mock def hyperbolic_distance_parts(u, v): # returns only the numerator and denominator of the hyperbolic distance formula diff = u - v #du = -(1 - u @ u) # for some reason we need to negate this #dv = -(1 - v @ v) # for some reason we need to negate this #return diff @ diff, du * dv # returns the numerator and denominator return diff @ diff # document matrix containing rows of document encoding vectors D = np.random.rand(database_size, encoding_width) # precompute 1 - |D|^2 for each row vector in D dv = [] for i in range(len(D)): v = D[i] dv.append(1 - v @ v) dv = np.array(dv) HE_server = Pyfhel() HE_server.from_bytes_context(s_context) HE_server.from_bytes_public_key(s_public_key) HE_server.from_bytes_relin_key(s_relin_key) HE_server.from_bytes_rotate_key(s_rotate_key) #cx = np.array([PyCtxt(pyfhel=HE_server, bytestring=s_cx[j]) for j in range(len(s_cx))]) cx = PyCtxt(pyfhel=HE_server, bytestring=s_cx) print(f"[Server] received HE_server={HE_server} and cx={cx}") # Encode each document weights in plaintext res = [] start = time.time() for i in range(len(D)): #d = np.array(D[i]) #cd = np.array([HE_server.encrypt(d[j]) for j in range(len(d))]) cd = HE_server.encrypt(D[i]) # Compute distance bewteen recieved query and D[i] res.append(hyperbolic_distance_parts(cx, cd)) end = time.time() print(f"[Server] Compute took {end - start}s with bandwidth {len(D) / (end-start)} documents/s") s_res = [res[j].to_bytes() for j in range(len(res))] print(f"[Server] Distances computed! Responding: res={res[0]}...") print(f"[Server] Sent {(np.sum([len(s_res[i]) for i in range(len(s_res))])) / (10**6)} MB") # Note that the time is mostly restricted by database size and not encoding size # Client Parse Response def hyperbolic_distance(u, v): num = ((u - v) @ (u - v)) den = (1 - (u @ u)) * (1 - (v @ v)) return np.arccosh(1 + 2 * (num / den)) #res = np.array([HE_client.decrypt(c_res[j]) for j in range(len(c_res))])[:,0] #res = HE_client.decrypt(c_res) c_res = [] for i in range(len(s_res)): #c_num = PyCtxt(pyfhel=HE_server, bytestring=s_res[i]) c_num = PyCtxt(pyfhel=HE_server, bytestring=s_res[i]) #c_den = PyCtxt(pyfhel=HE_server, bytestring=s_res[i][1]) p_num = HE_client.decrypt(c_num)[0] #p_den = HE_client.decrypt(c_den)[0] #dist = np.arccosh(1 + 2 * (p_num / p_den)) # compute final score dist = np.arccosh(1 + 2 * (p_num / (du * dv[i]))) #print(dist) c_res.append(dist) # Checking result expected_res = [hyperbolic_distance(x, np.array(w)) for w in D] #print(f"[Client] Response received! \nResult is {c_res} \nShould be {expected}\nDiff {np.abs(np.array(c_res) - np.array(expected))}") for i in range(len(c_res)): result = c_res[i] expected = expected_res[i] if np.abs(result - expected) < 1e-3: pass else: print(f"got: {result}, expected: {expected}") assert False